joi, 31 mai 2012

Metode de rationament


Metode de rationament




I.     636i83g ;     636i83g ;     636i83g ;     636i83g ;    Metoda directa( modus poneus) - pornind de la o propozitie A si folosind principiul silogismului demonstram ca o alta propozitie este adevarata.
II.     636i83g ;     636i83g ;     636i83g ;     636i83g ; Metoda indirecta – reducerea la absurd ce se bazeaza pe echivalenta  (p®q) º (ùq®ùp)
III.     636i83g ;     636i83g ;     636i83g ;   Metoda inductiei
  1.    Robot pe Marte

  2.   Ce să mai citim?

  3. Tatăl fondator al Uniunii Europene.            

  4. Colonizarea de pe Marte !

  5.   Ne pregătim pentru Marte

  6. Colonizarea Marte poate determina umanitatea să-și modifice ADN-ul ?

  7. Cine mai urăște să poarte mască?






Metoda inductiei
A. Egalitati

P(n):  1+2+3++n=n(n+1)/2             n³1
I. P(1):  1=1 (A)
II. P(n)  (A)ÞP(n+1) (A)

P(n+1):1+2+3+n+(n+1)=(n+1)(n+2)/2
            n(n+1)/2+(n+1)=(n+1)(n+2)/2
            (n+1)(n+2)/2=(n+1)(n+2)/2   (A)
I+IIÞ P(n) (A)    'n³1
Deci: 1+2+3+n = åk = n(n+1)/2 , n³1

P(n): 1² +2² +3² ++n²= n(n+1)(2n+1)/6       n³1

I. P(1):  1=1 (A)
II. P(n) (A) ÞP(n+1) (A)
P(n+1): 12 +22 +32 ++n2+(n+1)2=(n+1)(n+2)(2n+3)/6
             n(n+1)(2n+1)/6+(n+1)² =( n+1)(n+2)(2n+3)/6
             (n+1)(n+2)(2n+3)/6=( n+1)(n+2)(2n+3)/6  (A)
I+IIÞP(n)  (A)         'n³1
12 +22 +32 + +nåk= n(n+1)(2n+1)/6, n³1
13+23+33++n3= [n(n+1)/2]2         n³1
I. P(1): 1=1 (A)
II. P(n) (A) ÞP(n+1) (A)
      
P(n+1):13+23+33++n3+(n+1)3 = [(n+1)(n+2)/2]2
             [n(n+1)/2]2 +(n+1)3= [(n+1)(n+2)/2]2
             [(n+1)(n+2)/2]2 = [(n+1)(n+2)/2]2  (A)
I+IIÞP(n)  (A)         'n³1
13+23+33++n3=åk=
[n(n+1)/2]2, n³1
½a1+a2+..+an½£½a1½+½a2½++½an½   n³2
Exemple de egalitati rezolvate prin inductie
ex 1: S=1×4+2×7+3×10++n(3n+1)
             =åk(3k+1) = å3k2+k = å3k2+åk = 3åk2+å
             = 3n(n+1)(2n+1) /6+n(n+2)/2
             = n(n+1)(2n+1)+n(n+2)/2
             = n(n+1)(2n+1+1)/2
             = n(n+1)2

ex 2:  p(n): 1×4+2×7+n(3n+1)=n(n+1)2  n³1
           P(1): 1C4=1(1+1)2 Þ  4=4 (A)
          II  P(n) ÞP(n+1):1×4+2×7++n(3n+1)+(n+1)(3n+4)=(n+1)(n+2)2
              n(n+1)2+(n+1)(3n+4) = (n+1)(n+2)2
              (n+1)(n2+n+3n+4) = (n+1)(n+2)2
          I+IIÞP(n)  (A) 'n³1

ex 3: p(n): 1/(1×3)+1/(3×5)++1/[(2n-1)(2n+1)]=n/(2n+1)
         1/[(2k-1)(2k+1)]=1/2 [1/(2k-1)-1/(2k+1)] Þå1/[(2k-1)(2k+1)]=n/(2n+1)
          S1=1/(1×3)=1/3
         S2=S1+1/(1×3)=2/5
         S3=S2+1/(5×7)=3/7
         P(1): 1/3=1/(2×1+1)
         II P(k) ÞP(k+1)
          P(k+1): 1/(1×3)+1/(3×5)++ 1/[(2n-1)(2n+1)]+1/[(2n+1)(2n+3)]=(n+1)/(2n+3)
         n/(2n+1)+1/[(2n+1)(2n+3)]=(n+1)/(2n+3)
         [n(2n+3)+1]/[(2n+1)(2n+3)]=(n+1)/(2n+3)
         (2n2+3n+1)/[(2n+1)(2n+3)]= (n+1)/(2n+3)
         [(n+1)(2n+1)]/[(2n+3)(2n+1)]=(n+1)/(2n+3)  (A)
         I+IIÞP(n) (A) 'n³1        
 Exemple de inegalitati rezolvate prin inductie

ex 1: p(n): 2n>n2 ; n³5
         I P(5): 25>52   Þ 32>25
          II P(n) Þ P(n+1): 2n+1>(n+1)2½
          2n>n2   ½×2                              ½2n+1 > 2n> (n+1)2
          2n×2>2n2   Þ          2n+1>2n   ½
          Avem de dem ca 2n2>(n+1)2
          Þ 2n2>n2+2n+1 Þ n2-2n>1 ½+1
          Þn2-2n+1>2     Þ (n-1)2>2  'n³5
          n³Þ n-1³4  Þ (n-1)2³16>2      (A)
          I+IIÞP(n) adevarata 'n³5
ex 2: p(n):   1/(n+2)+1/(n+2)++1/(2n)>13/24         n³2
          I P(2): 1/3 +1/(2+2)>13/24 Þ7/12>13/24 Þ 14/24 >13/24 (A)
          II P(n+1): 1/(n+2)+1/(n+3)+..+1/(2n)+1/(2n+1)+1/(2n+2)>13/24
                           >13/24-1/(n+1)+1/(2n+1)+1/(2n+2)
                            =13/24-1/(2n+2)+1/(2n+1)
                            = 13/24 +1/[2(n+1)(2n+1)] ½
                             1/[2(n+1)(2n+1)]>0           ½13/24 +1/[2(n+1)(2n+1)]>13/24
           I +IIÞP(n) adevarata       'n³2
ex 3: p(n): 1/(n+1)+1/(n+2)++1/(3n+1)>1      n³1 Þ  2n+1 termeni
          I P(1): 1/(1+1)+1/(1+2)+1/(1+3)>1 Þ 13/12>1 (A)
          II P(n+1)=1/(n+2)+1/(n+3)++1/(3n+1)+1/(3n+2)+1/(3n+3)+1/(3n+4)
                           >1-1/(n+1)+1/(3n+2)+1/(3n+3)+1/(3n+4)
                           = 1+ ceva/[3(n+1)(3n+2)(3n+4)]  >1½
                                 ceva>0 ; 3(n+1)(3n+2)(3n+4)>0 ½Þ (A)
            I+IIÞ P(n) adevarata     'n³1
Alte exemple rezolvate prin inductie


ex 1:   p(n): 10n+18n-28  : 27          n³0
           P(0): -27 :27 (A)
           II P(n) (A) ÞP(n+1): 10n+1+18(n+1)-28 :27
               10n+18n-28=27pÞ10n+1+18n-10=27q
               10n= 27p -18n+28
               10n+1+18n-10=10×10n+18n-10=10(27p -18n+28)+18n-10
                =10×27p-180n+280+18n-10
                =10×27p-162n+270=27(10p-6n+10)=27q
             I+IIÞP(n)  (A)            'n³0
ex 2:    daca n³10  atunci 2n>n3     n³1
            P(n): (1/2)×(3/4)×× (2n-1)/2n<1/(Ö2n+1)
            P(1):1/2 <1/ÖÛ  2>Ö3  (A)
            II P(n+1): 1/2×3/4×× (2n-1)/2n× (2n+1)/(2n+2)<1/(Ö2n+3)
                            <1/(Ö2n+1) × (2n+1)/(2n+2)< 1/(Ö2n+3)
             (Ö2n+1)/(2n+2)< 1/(Ö2n+3)
              Ö(2n+1)(2n+3)<2n+2
              4n2+8n+3<4n2+8n+4 Þ3<4     (A)
            I+IIÞP(n) (A) 'n³1
ex 3: P(n): 2n>n3    n³10
         P(10): 210>103  Þ  1024>1000 (A)
         II P(n) (A) Þ P(n+1)
             P(n+1): 2n+1>(n+1)3       ½
             2n>n3 ½×2  Þ2n+1>2n3   ½2n+1>2n3>(n+1)3
            Avem de dem 2n3>(n+1)3
            2n3-(n+1)3>0  Þ  (3Ö2)3n3-(n+1)3>0    Þ (n 3Ö2)3-(n+1)3>0
             Þ (n 3Ö2-n-1)[n 2Ö4+n 3Ö2(n+1)+(n+1)2]>0
              n 2Ö4+n 3Ö2(n+1)+(n+1)2 >0
              n 3Ö2-n-1 >0   ?
             Þ n(3Ö2-1)>1   n  ³10        ½
               3Ö2>1,1   Þ   3Ö2-1>0,1   ½ n(3Ö2-1)>1
       I+IIÞP(n)  (A) 'n³10

Niciun comentariu:

Trimiteți un comentariu

Aria şi volumul

  Metodă de calcul